Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2490, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509080

RESUMO

Protein loop dynamics have recently been recognized as central to enzymatic activity, specificity and stability. However, the factors controlling loop opening and closing kinetics have remained elusive. Here, we combine molecular dynamics simulations with string-method determination of complex reaction coordinates to elucidate the molecular mechanism and rate-limiting step for WPD-loop dynamics in the PTP1B enzyme. While protein conformational dynamics is often represented as diffusive motion hindered by solvent viscosity and internal friction, we demonstrate that loop opening and closing is activated. It is governed by torsional rearrangement around a single loop peptide group and by significant friction caused by backbone adjustments, which can dynamically trap the loop. Considering both torsional barrier and time-dependent friction, our calculated rate constants exhibit very good agreement with experimental measurements, reproducing the change in loop opening kinetics between proteins. Furthermore, we demonstrate the applicability of our results to other enzymatic loops, including the M20 DHFR loop, thereby offering prospects for loop engineering potentially leading to enhanced designs.


Assuntos
Simulação de Dinâmica Molecular , Fricção , Conformação Proteica , Solventes , Cinética
2.
ACS Catal ; 13(7): 4348-4361, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066044

RESUMO

Caspases are cysteine proteases in charge of breaking a peptide bond next to an aspartate residue. Caspases constitute an important family of enzymes involved in cell death and inflammatory processes. A plethora of diseases, including neurological and metabolic diseases and cancer, are associated with the poor regulation of caspase-mediated cell death and inflammation. Human caspase-1 in particular carries out the transformation of the pro-inflammatory cytokine pro-interleukin-1ß into its active form, a key process in the inflammatory response and then in many diseases, such as Alzheimer's disease. Despite its importance, the reaction mechanism of caspases has remained elusive. The standard mechanistic proposal valid for other cysteine proteases and that involves the formation of an ion pair in the catalytic dyad is not supported by experimental evidence. Using a combination of classical and hybrid DFT/MM simulations, we propose a reaction mechanism for the human caspase-1 that explains experimental observations, including mutagenesis, kinetic, and structural data. In our mechanistic proposal, the catalytic cysteine, Cys285, is activated after a proton transfer to the amide group of the scissile peptide bond, a process facilitated by hydrogen-bond interactions with Ser339 and His237. The catalytic histidine does not directly participate in any proton transfer during the reaction. After formation of the acylenzyme intermediate, the deacylation step takes place through the activation of a water molecule by the terminal amino group of the peptide fragment formed during the acylation step. The overall activation free energy obtained from our DFT/MM simulations is in excellent agreement with the value derived from the experimental rate constant, 18.7 vs 17.9 kcal·mol-1, respectively. Simulations of the H237A mutant support our conclusions and agree with the reported reduced activity observed for this caspase-1 variant. We propose that this mechanism can explain the reactivity of all cysteine proteases belonging to the CD clan and that differences with respect to other clans could be related to the larger preference showed by enzymes of the CD clan for charged residues at position P1. This mechanism would avoid the free energy penalty associated with the formation of an ion pair. Finally, our structural description of the reaction process can be useful to assist in the design of inhibitors of caspase-1, a target in the treatment of several human diseases.

3.
Chem Sci ; 14(10): 2686-2697, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36908962

RESUMO

The use of antiviral drugs can promote the appearance of mutations in the target protein that increase the resistance of the virus to the treatment. This is also the case of nirmatrelvir, a covalent inhibitor of the 3CL protease, or main protease, of SARS-CoV-2. In this work we show how the by-residue decomposition of noncovalent interactions established between the drug and the enzyme, in combination with an analysis of naturally occurring mutations, can be used to detect potential mutations in the 3CL protease conferring resistance to nirmatrelvir. We also investigate the consequences of these mutations on the reaction mechanism to form the covalent enzyme-inhibitor complex using QM/MM methods. In particular, we show that the E166V variant of the protease displays smaller binding affinity to nirmatrelvir and larger activation free energy for the formation of the covalent complex, both factors contributing to the observed resistance to the treatment with this drug. The conclusions derived from our work can be used to anticipate the consequences of the introduction of nirmatrelvir in the fitness landscape of the virus and to design new inhibitors adapted to some of the possible resistance mechanisms.

4.
J Chem Theory Comput ; 18(6): 4005-4013, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35549334

RESUMO

Cysteine proteases are an important target for the development of inhibitors that could be used as drugs to regulate the activity of these kinds of enzymes involved in many diseases, including COVID-19. For this reason, it is important to have methodological tools that allow a detailed study of their activity and inhibition, combining computational efficiency and accuracy. We here explore the performance of different quantum mechanics/molecular mechanics methods to explore the inhibition reaction mechanism of the SARS-CoV-2 3CL protease with a hydroxymethyl ketone derivative. We selected two density functional theory (DFT) functionals (B3LYP and M06-2X), two semiempirical Hamiltonians (AM1d and PM6), and two tight-binding DFT methods (DFTB3 and GFN2-xTB) to explore the free energy landscape associated with this reaction. We show that it is possible to obtain an accurate description combining molecular dynamics simulations performed using tight-binding DFT methods and single-point energy corrections at a higher QM description. The use of a computational strategy that provides reliable results at a reasonable computational cost could assist the in silico screening of possible candidates during the design of new drugs directed against cysteine proteases.


Assuntos
COVID-19 , Cisteína Proteases , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Proteínas não Estruturais Virais
5.
Angew Chem Int Ed Engl ; 60(49): 25933-25941, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34581471

RESUMO

We present the results of classical and QM/MM simulations for the inhibition of SARS-CoV-2 3CL protease by a hydroxymethylketone inhibitor, PF-00835231. In the noncovalent complex the carbonyl oxygen atom of the warhead is placed in the oxyanion hole formed by residues 143 to 145, while P1-P3 groups are accommodated in the active site with interactions similar to those observed for the peptide substrate. According to alchemical free energy calculations, the P1' hydroxymethyl group also contributes to the binding free energy. Covalent inhibition of the enzyme is triggered by the proton transfer from Cys145 to His41. This step is followed by the nucleophilic attack of the Sγ atom on the carbonyl carbon atom of the inhibitor and a proton transfer from His41 to the carbonyl oxygen atom mediated by the P1' hydroxyl group. Computational simulations show that the addition of a chloromethyl substituent to the P1' group may lower the activation free energy for covalent inhibition.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Desenho de Fármacos , Cetonas/química , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Sítios de Ligação , COVID-19/virologia , Domínio Catalítico , Proteases 3C de Coronavírus/metabolismo , Humanos , Cetonas/metabolismo , Cetonas/uso terapêutico , Cinética , Simulação de Dinâmica Molecular , Inibidores de Proteases/metabolismo , Inibidores de Proteases/uso terapêutico , SARS-CoV-2/isolamento & purificação , Termodinâmica , Tratamento Farmacológico da COVID-19
6.
Chem Commun (Camb) ; 57(72): 9096-9099, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34498651

RESUMO

We present a detailed computational analysis of the binding mode and reactivity of the novel oral inhibitor PF-07321332 developed against the SARS-CoV-2 3CL protease. Alchemical free energy calculations suggest that positions P3 and P4 could be susceptible to improvement in order to get a larger binding strength. QM/MM simulations unveil the reaction mechanism for covalent inhibition, showing that the nitrile warhead facilitates the recruitment of a water molecule for the proton transfer step.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Simulação de Dinâmica Molecular , Nitrilas/química , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Proteases 3C de Coronavírus/metabolismo , Humanos , Lactamas/química , Lactamas/metabolismo , Leucina/química , Leucina/metabolismo , Nitrilas/metabolismo , Prolina/química , Prolina/metabolismo , Inibidores de Proteases/metabolismo , Teoria Quântica , SARS-CoV-2/isolamento & purificação , Termodinâmica
7.
ACS Catal ; 11(7): 4157-4168, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-34192090

RESUMO

We here investigate the mechanism of SARS-CoV-2 3CL protease inhibition by one of the most promising families of inhibitors, those containing an aldehyde group as a warhead. These compounds are covalent inhibitors that inactivate the protease, forming a stable hemithioacetal complex. Inhibitor 11a is a potent inhibitor that has been already tested in vitro and in animals. Using a combination of classical and QM/MM simulations, we determined the binding mode of the inhibitor into the active site and the preferred rotameric state of the catalytic histidine. In the noncovalent complex, the aldehyde group is accommodated into the oxyanion hole formed by the NH main-chain groups of residues 143 to 145. In this pose, P1-P3 groups of the inhibitor mimic the interactions established by the natural peptide substrate. The reaction is initiated with the formation of the catalytic dyad ion pair after a proton transfer from Cys145 to His41. From this activated state, covalent inhibition proceeds with the nucleophilic attack of the deprotonated Sγ atom of Cys145 to the aldehyde carbon atom and a water-mediated proton transfer from the Nε atom of His41 to the aldehyde oxygen atom. Our proposed reaction transition-state structure is validated by comparison with X-ray data of recently reported inhibitors, while the activation free energy obtained from our simulations agrees with the experimentally derived value, supporting the validity of our findings. Our study stresses the interplay between the conformational dynamics of the inhibitor and the protein with the inhibition mechanism and the importance of including conformational diversity for accurate predictions about the inhibition of the main protease of SARS-CoV-2. The conclusions derived from our work can also be used to rationalize the behavior of other recently proposed inhibitor compounds, including aldehydes and ketones with high inhibitory potency.

8.
Chem Sci ; 12(10): 3489-3496, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-34163622

RESUMO

The irreversible inhibition of the main protease of SARS-CoV-2 by a Michael acceptor known as N3 has been investigated using multiscale methods. The noncovalent enzyme-inhibitor complex was simulated using classical molecular dynamics techniques and the pose of the inhibitor in the active site was compared to that of the natural substrate, a peptide containing the Gln-Ser scissile bond. The formation of the covalent enzyme-inhibitor complex was then simulated using hybrid QM/MM free energy methods. After binding, the reaction mechanism was found to be composed of two steps: (i) the activation of the catalytic dyad (Cys145 and His41) to form an ion pair and (ii) a Michael addition where the attack of the Sγ atom of Cys145 to the Cß atom of the inhibitor precedes the water-mediated proton transfer from His41 to the Cα atom. The microscopic description of protease inhibition by N3 obtained from our simulations is strongly supported by the excellent agreement between the estimated activation free energy and the value derived from kinetic experiments. Comparison with the acylation reaction of a peptide substrate suggests that N3-based inhibitors could be improved by adding chemical modifications that could facilitate the formation of the catalytic dyad ion pair.

9.
ACS Catal ; 10: 12544-12554, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34192089

RESUMO

We present a detailed theoretical analysis of the reaction mechanism of proteolysis catalyzed by the main protease of SARS-CoV-2. Using multiscale simulation methods, we have characterized the interactions established by a peptidic substrate in the active site, and then we have explored the free energy landscape associated with the acylation and deacylation steps of the proteolysis reaction, characterizing the transition states of the process. Our mechanistic proposals can explain most of the experimental observations made on the highly similar ortholog protease of SARS-CoV. We point to some key interactions that may facilitate the acylation process and thus can be crucial in the design of more specific and efficient inhibitors of the main protease activity. In particular, from our results, the P1' residue can be a key factor to improve the thermodynamics and kinetics of the inhibition process.

10.
Eur J Med Chem ; 169: 159-167, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30875506

RESUMO

The metabolic product of caspase-1, IL-1ß, is an important mediator in inflammation and pyroptosis cell death process. Alzheimer's disease, septic shock and rheumatoid arthritis are IL-1ß mediated diseases, making the caspase-1 an interesting target of pharmacological value. Many inhibitors have been developed until now, most of them are peptidomimetic with improved potency. In the present study, all-atom molecular dynamics simulations and the MM/GBSA method were employed to reproduce and interpret the results obtained by in vitro experiments for a series of inhibitors. The analysis shows that the tautomeric state of the catalytic His237 impact significantly the performance of the prediction protocol, providing evidence for a His237 tautomeric state different to the proposed in the putative mechanism. Additionally, analysis of inhibitor-enzyme interactions indicates that the differences in the inhibitory potency of the tested ligands can be explained mainly by the interaction of the inhibitors with the S2-S4 protein region. These results provide guidelines for subsequent studies of caspase-1 catalytic reaction mechanism and for the design of novel inhibitors.


Assuntos
Caspase 1/metabolismo , Desenho de Fármacos , Serpinas/farmacologia , Proteínas Virais/farmacologia , Biocatálise , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Serpinas/síntese química , Serpinas/química , Relação Estrutura-Atividade , Termodinâmica , Proteínas Virais/síntese química , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...